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Elastic properties of U02 at high pressure * 
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The elastic constal!ts of UOl have been measured as a function of pressure up to 20 kbar (2.0 GPa) at 
23 ·C. To within experimental uncertainty, the constants are linear functions of pressure, and no pressure­
induced phase transitions occur in this 20-kbar pressure range. The elastic constant data are used to 
estimate the various polycrystalline elastic moduli and their pressure dependences, and the zero-pressure 
moduli are compared with data from polycrystalline material. Isothermal moduli are calculated from the 
adiabatic values. The elastic-constant data are also used to discuss the separation of the 'pure' volume and 
temperature contributions to the (isobaric) temperature dependences of the elastic constants as well as to 
estimate the Griineisen constant, Debye temperature, and equation of state of this material. 

PACS numbers: 62.20.Dc, 62.50.+p 

I. INTRODUCTION 

Uranium dioxide , U02 , is a material of considerable 
technological importance because of its use in reactor 
fuel cells. Although the physical properties of U02 in 
both single-crystalline and polycrystalline forms have 
been quite extensively studied, especially at high tem­
perature , there is little information available about the 
behavior of this material at high pressure. In particular, 
it has not been known whether U02 has any pressure­
induced phase transitions, similar to those observed in 
other materials with the same (cubic fluorite) structure. 
In order to investigate the elastic prop'erties of U02 at 
high pressure and to look for pressure-induced phase 
transitions we have made an ultrasonic determination 
of the pressure dependences of the elastic constants up 
to 20 kbar at room temperature. No phase transitions 
were found in this range. In Sec. II of this paper the 
experimental details of this work are presented. In 
Sec. III the elastic-constant data are presented and an­
alyzed. In Sec. IV the results of several calculations 
using the elastic-constant data are discussed. These 
include the prediction of the elastic properties of poly­
crystals, the separation of "pure" temperature and 
volume effects, the transformation from adiabatic to 
isothermal properties, and estimates of the Griineisen 
constant, Debye temperature, and of the equation of 
state. 

II. EXPERIMENTAL 

Since U02 has cubic symmetry, its elastic properties 
are determined by the three elastic constants Cll , C12 , 

and C44 • These three constants may be determined from 
the velocities of the three acoustic modes propagating 
along the [110] crystallographic direction. These veloc­
ities are given by the relations 

(la) 

(lb) 

(lc) 

where p is the density , Vi are the three velocities, and 
where i = 1 represents the shear mode polarized along 
[001], i=2 represents the shear mode polarized along 
[flO], and i=3 represents the longitudinal mode. The 
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U02 sample utilized in the ultrasonic experiments was 
prepared with pairs of [110] and [111] faces. The mode 
velocities along [111] are given by 

(2a) 

(2b) 

Measurements of these modes provided cross checks 
of the data obtained from the [no] orientation. 

The U02 crystals us.ed in this work were supplied by 
H. J. Anderson of the Westinghouse Hanford Company. 
Crystal growth, impurity analysis, and stochiometry 
are exactly the same as described by Wachtman el al. 1 

The density was determined by weighing in CCl4 to be 
equal to the theoretical.x-ray value of 10.97 g/ cm3

• 

For the sample used in the ultrasonic measurements, 
the [110] and [111] faces were oriented to within 0.5° 
by x-ray techniques, and each pair of faces was care­
fully lapped to be flat and parallel. 

All the ultrasonic measurements were made by the 
pulse-superposition technique of McSkimin. 2 The in­
strumentation system included a pulse-sequence genera­
tor which utilizes logic circuitry to generate a number 
of sequential applied pulses to the sample at the repeti­
tion rate frequency j, but with a low over-all duty 
cycle. 3 Also included was a phase-sensitive peak detec­
tor with a servo feedback mechanism to automatically 
follow the superpositioning repetition rate as a function 
of pressure. 4 

For the measurements of the elastic constants at 
room temperature, transducers with fundamental fre­
quencies of 10 and 20 MHz operating at either their 
fundamental or third harmonic frequencies were utilized. 
The use of these four frequencies plus the technique of 
McSkimin5 allowed an unambiguous determination of the 
correct cycle-for-cycle superpositioning of the ultra­
sonic echoes. The high-pressure runs were made at 20 
MHz, with some of the data checked at 60 MHz. In all 
cases the transducer-sample bond was phthalic an­
hydride-glycerin polymer. Hydrostatic pressure was 
generated by a standard Bridgman press with a 50-50 
mixture of pentane and isopentane as the pressure 
fluid, and pressure was measured to an accuracy of 
1 % with a calibrated manganin coil. 
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TABLE I. Single-crystal adiabatic elas tic par ameters and their pressure and temperature deril·atil·es . 

Elastic parameter VaIue of Q a dQc dQd,e 

Q dp dT 
This work Wachtman eL al. b 

GI1 3 .893 ± 0.017 3.96 ", 0. 018 5. 35± 0.2.! - 5. 2 
G12 1. 187 ± 0.017 1. 21 i 0.019 4. 35± 0.24 - 2. 3 
G,,1 0.597 ± 0.003 0.641 ,,- 0.0017 1. 62 ± 0.03 - 1. 1 
811 3. OO ± 0.02 2.96 or 0.010 - O. 20.., 0.05 
812 - O. 700 ±O. 012 - O. 697 or 0.008 -0.07 ± 0.01 
8J1 16. 75 ± 0.08 15. 59 ± O. OH - 4.3 ± 0.1 
Ky 4. 79 ± 0.03 4.70" O. O.! -1. 03 ± 0.03 

'G li in 1012 dyn/ cm2, 8jJ and Ky in 10-13 cm2/ dyn. 
bReference 1. 

, cd8i / dp in 10-21 cmJ/ dyn2. 

III. RESULTS AND DATA ANALYSIS 

A. Elastic constants under ambient conditions 

The measurements of the repetition rate frequencies 
at room temperature and atmospheric pressure were 
reproducible to a few tenths of a percent when different 
rf frequencies and bonds were used. This slight lack 
of reproducibility is most likely due to nonideal bonds 
and is the largest source of error in the measurement 
of the absolute values of the elastic constants for the 
mode propagating along [110]. The values of the three 
elastic constants [determined from Eqs. (1)] and their 
estimated uncertainties are given in the second column 
of Table I. Also listed in that column are the derived 
elastic compliances Sli and volume compressibility 
Ky. All these elastic parameters are adiabatic param­
eters. The comparison of the present elastic constants 
with measurements of other workers will be discussed 
below. 

As was already mentioned, the longitudinal and shear 
m:>des propagating along [111] were measured as cross 
checks of the data. It was found that the measured ef­
fective elastic constant for the longitudinal mode, Eq. 
(2b), agreed to within 0.1% with the value predicted 
using the Gii obtained from the [110] propagation direc­
tion, Table I. The measured shear-mode effective 
elastic constant, Eq. (2a), however, was about 2% 
higher than predicted. The exact cause for this discrep­
ancy is not known, but it may be associated with the 
fact that for this mode the energy flow direction (elastic 
Poynting vector) is not colinear with the propagation 
direction. It was noted that the echo pattern was not 
ideal for this mode and changed somewhat with change 
in the polarization direction. Therefore, measurements 
of this mode are probably considerably less reliable 
than for the other modes. The excellent agreement for 
the longitudinal mode along [111] indicates that the 
crystal was accurately oriented and that the correct 
cycle-for-cycle superpositions were used in the 
measurements. 

B. Elastic constants at high pressure 

The ultrasonic data for the three modes propagating 
along [110] are shown in Fig. 1. The quantity plotted 
is [j(p) / fo]2, where f(P) is the repetition rate frequency 
(inverse pulse transit time) and fo is the value of f(P) at 
p = O. The relation between the effective elastic con-
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d dG ij/ dT in lOR dyn/ cm2 OK. 
eReference 13 . 

stant G' (p) for a given mode and the repetition rate 
frequency for that mode is 

G'(p) _ ~ ('(P)j(P))2 _ ~ ( f(P))2 
G~ - V(P) lufo - l(p) f(O) , 

(3) 

where V is the volume of the sample and 1 is the ultra­
sonic path length. Thus the data plots of Fig. 1 repre­
sent the reduced effective elastic constants (which are 
listed on the figure for each mode), but only to the 
extent that the compression of the sample can be ig­
nored. To extract the pressure dependences of the in­
dividual elastic constants a method similar to the method 
of CookG was used to calculate simultaneously and self­
conSistently both the dimensional and elastic-constant 
changes. The resulting pressure-dependent elastic 

I. 05 . 

1.04 

"'_ 1.03 

1.02 

I. 01 

o MODE 1: C
M 

o MODE 2: 112 (C 11 - C 12) 

r,. MO DE 3: 1/2 (C 11 + C 12 + 2 C 441 

4 8 12 

PRESSURE (kbarl 

16 20 

FIG. 1. Repetition r ate data plotted as the square of the rela­
tive rate versus pressure. 
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FIG. 2. Pressure dependences of the elastic constants . 

constants are shown in Fig. 2. From Figs. 1 and 2 we 
see that the elastic properties of U02 appear to exhibit 
normal pressure dependences with no evidence for any 
anomalous softening of any elastic constant or for any 
pressure-induced phase transitions. Within experimen­
tal uncertainty the elastic constants vary linearly with 
pressure , at least up to the 20-kbar limit of the pres­
ent experiment. The pressure derivatives of the vari­
ous elastic parameters are listed in Table I with their 
experimental uncertainties. 

The pressure-dependent elastic constants (determined 
as described above from the modes propagating along 
[110]) were used to predict the expected pressure de­
rivatives of the /j(P) / f oJ2 data for the modes propagating 
along [111]. For the longitudinal mode the agreement 
between prediction and the actual measurement is 
within 3%, which is well within the experimental un-

certainties listed in Table I. For the shear mode there 
is a discrepancy of about 10% , but , again, the data for 
this mode are not considered as reliable as for the 
other modes. 

IV. DISCUSSION 

A. Elastic constants at ambient conditions and 
prediction of polycrystalline properties 

The values of the elastic constants obtained under 
ambient conditions obtained in this work are shown in 
Table I along with the values obtained by Wachtman 
e / ai. 1 The agreement between these two sets of values 
is disappointingly poor, especially for C44 ' where there 
is a 7% discrepancy which is well outSide the range of 
the experimental uncertainties. The reason for the dis­
agreement is not known, but there are several pos­
sibilities. In the first place , it has been found difficult 
to obtain consistent and reproducible values for other 
measured physical properties of U02 such as thermal 
expansion, 6 and this is apparently due to actual sample­
to-sample variations. Thus , even though our crystal 
was from the same source as those used by Wachtman 
e/ al. , 1 the measured differences may be real. 
Wachtman el al. obtained a large range of values for 
the Gjj from their measurements on different samples 
and with different sound propagation directions. This 
may be partially due to sample differences. Another 
possible problem may be related to the fact that 
Wachtman el al. made their transit-time measurements 
on rectified pulses. Techniques USing unrectified pulses 
(such as pulse superposition or pulse-echo overlap, for 
example) are generally regarded as Significantly more 
reliable , as systematic errors which may occur when 
USing rectified pulses are quite easily eliminated. A 
third source of error may be associated with the prob­
lem mentioned above of measuring the shear-mode ve­
lOCity for [111] propagation. Noncolinearity of the acous­
tic energy flux and the propagation direction can, in 
some instances, cause distortion of the echoes leading 
to velocity errors. As Wachtman el al. did not mea­
sure velocities along high-symmetry directions, this 
effect could possibly have been a problem. 

The single-crystal elastic constants can be used to 
estimate the bulk elastic properties of polycrystaUine 
U02 by USing the method of Hill? (Voigt-Reuss-Hill 
averaging scheme). AndersonB has found this method to 
give reliable values for the polycrystalline properties 

TABLE n. Adiabatic elastic moduli of polycrystalline U02• K, G, and E in units of kbar. , 
Modulus 
M 

K 
G 
E 
a 

aReference 1. 
bReference 9. 
cReference 10. 

VRH averages 

This work 

2090 
830 

2210 
0.324 

Wachtman 
et al . a 

2130 
870 

2310 
0. 319 
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Marlowe b 

2032 
821 

2172 
0.323 

Measured values 

Forlano 
et al . C 

2234 

dReference 11. 
·Units of 10-12 cm2/dyn. 

Igato and 
Domoto d 

2196 

I.J. Fritz 

dM 
dp 

4.69 
1. 42 
3.90 
0.08 • 
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of many materials. Predicted values for the bulk modu­
lus K, shear modulus G, Young's modulus E, and 
Poisson's ratio a are shown in Table II for the values 
of the Cii obtained by us (first column) and by Wachtman 
el al. (second column). The last three columns show 
measured values (all extrapolated to zero porosity) as 
obtained by Marlowe, 9 Forlano et al. ,10 and Igata and 
Domoto. 11 The agreement between the measured values 
and the values predicted from the Cli of Wachtman et 
al. is significantly worse. The pressure derivatives of 
K, G, E, and a (predicted from the pressure depen­
dences of the C i ) are shown in the last column of Table 
II. 

Anderson8 has calculated values of "average" longi­
tudinal and shear sound velocities for many oxides and 
it is interesting to compare the U02 results with the 
properties of the other oxides. We find average veloci­
ties (longitudinal and shear, respectively) of 

VI = [(K + f G)/ p]1 /2 = 5.4 X 105 cm/ sec , 

and 

Vs =(G/ p)1/2 = 2.8 X 105 cm/ sec. 

The pressure derivatives of these velocities are dlnv/ 
dp=1.0 X lO- 3 kbar- 1 and dlnv/dp= 0.85x10-3 kbar-1. 
Anderson8 shows in his Fig. 2 the general trend for ma­
terials with a given kind of anion (oxides , fluorides, 
chlorides, bromides, iodides, and carbides) to have a 
decreasing value of v / p as a function of the mean atom­
ic weight M (where M =M/n with M equal to molecular 
weight and n equal to number of atoms in the molecule). 
For the oxides considered by Anderson , v/ p decreases 
anomalously rapidly compared to the other substances 
on the graph and in fact extrapolates to zero at M'" 55. 
For U02 we ha~e M=90, and the value of v/p"'0.5 is 
generally in line_with the values for other materials with 
large values of M, e. g . , th~ iodides. Thus the general 
trends for the oxides with M .,. 41 do not necessarily ex­
trapolate to large values of M. Anderson et al. 12 have 
shown that the elastic properties of many oxides can be 
parameterized as a function of M and p, but have cau­
tioned that this approach may be too simplistic in gen­
eral. The present results for U02 appear to justify this 
caution . For example, the U02 values of K and p do not 
fall anywhere near the values for other oxides on a 
double log plot of K versus p. (See, for example, Fig. 
7 of Ref. 12.) 

B. Separation of "pure" temperature and volume 
effects 

The temperature dependences of the elastic constants 
Cli between 4.2 and 300 OK have been measured by 
Brandt and Walker13 in their study of the 31 OK anti­
ferromagnetic phase transition. From their data we have 
determined the temperature derivatives of the Cli at 
room temperature (296 OK). These derivatives, which 
are listed in Table I , can be conSidered as being com­
pos ed of two separate contributions, namely the "pure 
volume" contribution (due to the thermal expansion of 
the sample) and a "pure temperature" contribution (due 
to anharmonic lattice effects at constant volume). The 
relation expressing this composition iS14 

(a InCII) = _ 3Q1 (a InCII) + (a InCIl ) , (4) 
aT p Ky ap T aT y 
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TABLE III. Separation of "pure" temperature and volume con­
tributions to the isobaric temperature derivatives of the elastic 
constants. Units are 10-~/·K . 

CIj (a lnCjJ) 30 
aT p Ky 

Cu -1. 32 

C12 -1. 88 

CH + 1. 70 

(~) ap T 

-0.65 

-1. 72 

-1. 27 

+ (a l:;iJ) y 

0.67 

0.16 

+ 2.97 

where the first term on the right-hand side is the "pure 
volume" contribution with QI the linear thermal expan­
Sion, and the second term is the "pure temperature" 
effect. For QI we use the value QI = 7.5 x 1O-6/ oK which 
we obtained as a typical experimental value from data 
shown by Winslow . 6 The separation described by Eq. 
(4) is shown for the Cli in Table Ill. For Cll and C12 
both the "pure volume" and "pure temperature" effects 
are negative, with the volume effect dominating for C12 . 
For C14 the pure temperature effect is positive and 
dominates the isobaric temperature effect causing C44 

to increase with increasing temperature . This anom­
alous temperature effect is due to the low-temperature 
phase transition, which has been discussed previously 
in the literature. 15 The softening of C44 as the 31 OK 
transitiun is approached is due to the coupling of the xz 
strain to the low-lying electronic states of the U02 ions 
(cooperative Jahn-Teller effect). It is the large temper­
ature effect of this coupling which is responsible for the 
large and positive "pure temperature" effect for C44 

shown in Table III . 

C. Adiabatic-isothermal corrections 

All of the elastic properties discussed so far have 
been adiabatic properties. For some applications it is 
desirable to have isothermal values of the various 
elastic moduli. The transformation between adiabatic 
and isothermal compliances (S~i and S~ , respectively) 
is given by the follOwing equations: 

T 5 Ql2T 
S11=S11 + -C ' 

P P 

ST S5 Ql2T 
12= 12+ -C ' P p 

(5) 

where Cp is the speCific heat at constant pressure, for 
which we take the value16 15 . 3 cal/oK mol. Note that the 
following hold: 

(6) 

We will discuss the adiabatic-isothermal correction only 
for the moduli K, G·, E, and a. For the bulk modulus 
we obtain from Eqs . (5) the result 

1 1 9Q12T ---+--
KT -K5 pCp' 

(7) 
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which gives the isothermal bulk modulus KT = 2060 kbar 
as compared to the adiabatic value (Table II) of KS 
= 2090 kbar. For the shear modulus we have , because 
of Eq. (6) , the results GS = GT

• This result is obvious, 
because there is no thermoelastic effect associated with 
the shear mode. However, the point is emphasized 
here, b1cause it apparently has not been realized by all 
workers. 9 

To calculate the Voigt-Reuss-Hill isothermal 
Young's modulus we first make separate adiabatic to 
isothermal corrections for the Voigt and Reuss expres­
sions then take the average value of the resulting iso­
thermal m::>duli. We obtain the isothermal Young's 
modulus of 2204 kbar compared to the adiabatic value of 
2207 kbar. (The value of 2210 kbar given in Table II 
was rounded off to three significant digits. This was not 
done for the present calculation because the adiabatic to 
isothermal correction is so small.) The smallness of 
the correction is due to the fact that the value of the 
shear modulus G dominates the value of E and, as dis­
cussed above, there is no adiabatic to isothermal cor­
rection for G. For Poisson's ratio we find, using a 
similar procedure to that used for E, the isothermal 
value aT = 0.322 compared to the adiabatic value of 
05 = 0.324. 

Marlowe9 has published adiabatic to isothermal cor­
rections for U02 based on the assumption (which he does 
not justify) that there is zero correction for a. This 
procedure leads to a finite correction for G and a cor­
rection for E which is about three times larger than the 
one we have calculated. We believe that our procedure 
for calculating the adiabatic to isothermal corrections 
(zero correction for G) is better justified than Marlowe's. 
The corrections are, of course, quite small at room 
temperature. 

D. Gruneisen constant, Debye temperature, and 
equation of state 

Procedures for estimating the Gruneisen constant Y 
from Single-crystal elastic-constant data have been 
extensively reviewed in the literature17 and will not be 
discussed here in any detail. These procedures gen­
erally involve some approximations which cannot be 
rigorously justified. We will use what is probably the 
simplest (and least justifiable) approach, which is to 
assume an isotropic model with the values of VI and V. 
which were computed above as the sound velocities. In 
this approach we expect Y to lie between the values of 
hT and YHT defined by the following equations : 

In Eq. (8), Y I and Ys are defined as 

= !. + KT (0 Invs ) 
Ys 3 op T' 

=.!.+KT (alnV/) 
YI 3 ap T 

USing the values of vI' vs ' and their pressure deriva-
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(8) 

(9) 

tives given above we obtain Y. = 2.1 and Y, = 2.4 , which 
yield YHT = 2.2 and YLT = 2.1 . The values of the thermal 
Gruneisen parameter reported in the literature have a 
range of values, possibly because of sample-to-sample 
variations. HaWS reports a room temperature value of 
1.8 as calculated from data of Burdick and Parker19 

(thermal expansion) and of Rand and Kubaschewski20 
(heat capacity). Using the value of a quoted above and 
the heat-capacity data of Moore and Kelley21 we obtain 
the same value of Yth = 1. 8. Marlowe and Kaznoff22 ob­
tain values near 1.7 , while Winslow6 uses a value of 
2.0. 

Elastic data can be used to estimate the Debye tem­
perature 8, The appropriate equation , which again holds 
for an isotropic model, is17 

_ !!.(9PN)I/3(~ ...!..-) -1 /3 
8 - k 4 M -3 + -3 , 

W Vs V, 
(10) 

where Iz is Planck's constant, k is Bolzmann's constant, 
and N is Avogadro's number. Using the values of Vs and 
VI obtained above we obtain a Debye temperature of 8 
= 385 °K. Marlowe and Kaznoff22 give a value of 8=875 °K 
computed from their elastic data, It is very difficult to 
understand this large discrepancy, since the elastic 
data are in reasonably good agreement. One 'possible 
explanation is that Marlowe and Kaznoff may have made 
an algebraic error in evaluating Eq. (10); in this regard 
note that the ratio of the two Debye temperatures is 
875/ 385::::: 101

/
3

• Jones et al. 16 obtain a value of 8 
= 160 OK from low-temperature specific-heat data. It 
has been pointed out previously, 22 ,23 however, there is 
a magnetic contribution to the specific heat at low tem­
perature due to the 31 OK antiferromagnetic transition 
which makes a reliable determination of the Debye tem­
perature difficult. Dolling el al. 23 have fitted their 
neutron diffraction data on U02 to a shell model and have 
plotted the temperature dependence of the predicted 
Debye temperature between 0 and 500 OK. The 0 OK value 
for 8 is 8=395 OK in good agreement with our value of 
8= 385 OK. 

Anderson24 has discussed the use of the pressure 
derivative of the isothermal bulk modulus dKT / dp to 
estimate the high-pressure compression of solids via 
the Murnaghan equation of state. This equation is 

In - - - In 1 + P --V (dKT)-1 ( dlnK
T

) 
Vo - dp dp . (11) 

We have followed the procedure given by Anderson24 to 
obtain dKT 

/ dp from our value of dJ(s / dp = 4.69 (Table 
II). We obtain dKT / dp = 4.81, which gives the following 
compression equation 

V/ V
O
=(1 + 0.00233p)-O.20S. (12) 

In summary, we have measured the elastic constants 
of U02 at high pressure, and these r:onstants exhibit 
normal and linear increases with pressure up to 20 
kbar. There is no evidence for a pressure-induced 
room-temperature phase transition up to this pressure, 
The data have been used to calculate various elastic 
properties of U02 and compared to other data and cal­
culations where possible. 
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